KI – großes Mysterium und gesellschaftliche Herausforderung

Zurzeit gibt es eine intensive Debatte um neue Systeme Künstlicher Intelligenz. Diese IT-Systeme bieten in der Tat einen großen Innovationssprung gegenüber ihren Vorgängern, weil sie erstmals über Sprachmodelle verfügen, die so gut sind, dass auch längere Texte von ihnen in wenigen Sekunden generiert werden können. In vielen Medien wird nun diskutiert, was das bedeutet, dass nun so etwas wie ein intelligentes Gegenüber zum Menschen existiert, ein Gegenüber, das selbständig kommunizieren kann und vielleicht auf dem Wege ist, intelligenter als der Mensch zu werden.

Wir stehen tatsächlich vor einem Rätsel, einem Mysterium. Die KI ist unbestreitbar etwas so Großes und führt zu Veränderungen, die wir zurzeit kaum überschauen können. Diese Situation bietet ein Eldorado für Spekulationen und wilde Gerüchte. Wenn dann auch die Entwickler wie Sam Altman von Open AI mit drastischen Warnungen an die Öffentlichkeit gehen, scheint die Gefahr durch die neuen KI Systeme wirklich groß zu sein.

Was ist das Neue an ChatGPT?

Umso wichtiger ist es aber, sich vor weitreichenden Schlüssen zunächst einmal auf das Bekannte und Wahrscheinliche zu beziehen. Aufregung erzeugen diese Systeme, weil ihre Anwendungsmöglichkeiten gegenüber den älteren viel variantenreicher sind. Bisher konnten KI Systeme vor allem optisch vermittelte Muster erkennen und aus den Mustern bestimmte Folgerungen ableiten. Solche Muster waren Konstellationen von Spielsteinen wie bei dem höchstkomplexen Go-Spiel oder Bilder von Computertomographen im medizinischen Bereich oder die Konstellation von Verkehrsteilnehmern für Systeme des autonomen Fahrens. Auch gesprochene Sätze bestehen aus Mustern, aus akustischen Mustern, und können dementsprechend erkannt und übersetzt oder zu einer Sprachsteuerung verwendet werden.

Neu ist nun nach der Veröffentlichung von ChatGPT durch das Unternehmen OpenAI im letzten Herbst, dass Texte nicht nur übersetzt oder für die Maschinensteuerung verwendet werden, sondern von der KI autonom generiert werden können. Diese sind in der Lage, angemessen auf eingegebene Fragen, Aufforderungen oder auf andere Texte zu reagieren. Entscheidend ist, dass die neue Form von KI jetzt über ein leistungsfähiges Sprachmodell verfügt, das ihr hilft, scheinbar souverän mit der Bedeutung von Texten umzugehen.

Eine KI, die Sprache souverän verwendet, wirft Fragen auf

Damit, das ist wahrlich ein dramatischer Entwicklungssprung, sind die KI Maschinen nun in den Sprachraum der Menschen eingedrungen.  Sie produzieren selbständig Texte, die eine sinnvolle Bedeutung haben. Was sind die Folgen? Es zeichnen sich in der aktuellen Diskussion zwei Themenfelder ab, die sehr unterschiedlich zu bewerten sind. In dem ersten steht die große Frage nach einer Intelligenz im Mittelpunkt, die dem Menschen nun gegenübertritt, ja ihn möglicherweise dominieren kann. In dem zweiten konzentriert sich die Diskussion auf den Einfluss der Systeme auf die weitere Entwicklung der Gesellschaft, auf die zwischenmenschliche Kommunikation.

Wird die KI zu einem Gegenüber für den Menschen?

Zum ersten Themenfeld, der KI als menschliches Gegenüber: Sind diese Systeme so etwas wie eine menschlich geschaffene Kreatur, die der Entstehung des Menschen selbst nahekommt? Findet nun der Mensch in diesen Maschinen ein Gegenüber? Wir wissen es nicht. Die KI ist offenkundig ein schwer zu entschlüsselndes Mysterium.

Es gibt aber gute Gründe, die aktuellen Erfolge nicht zu hoch zu bewerten. Denn die Idee, dem Menschen ein maschinelles Gegenüber zu schaffen, stand schon ganz am Anfang der KI Forschung in den 50er Jahren des vergangenen Jahrhunderts. (vgl. den Beitrag zur Leitidee) Hier zeigt sich eine kulturell tiefsitzende Erwartung bzw. Befürchtung, es geht um Möglichkeiten und Grenzen menschlicher Handlungsmacht. Zu Beginn der KI Forschung waren technologische Mittel noch völlig unzureichend, aber die Idee prägte von Beginn an die weitere Entwicklung. Es ging von Anfang an um eine künstliche, aber menschenanaloge Intelligenz. Es ist deshalb nicht sehr überraschend, dass nach diesem Technologiesprung durch die Sprachmodelle erneut die Diskussion um die Menschenähnlichkeit auftaucht.

Was genau ist Intelligenz?

Ich vermute, dass das erste Themenfeld einigermaßen unfruchtbar ist. Das große Problem: Wir wissen nicht einmal genau, was das menschliche Bewusstsein, was menschliche Intelligenz auszeichnet. Es gibt keine allgemein geteilte Definition. Umso schwieriger wird es sein, die neuen KI Systeme einzuschätzen. Das Themenfeld war und ist hochspekulativ, viele suchten schon in der Vergangenheit weite Aufmerksamkeit, wie etwa die Singularitätsthese von Ray Kurzweil. Wahrscheinlich ist, dass sich nach einiger Zeit auch bei den neuen KI Modellen Grenzen zeigen werden, die den Unterschied zwischen Maschine und Mensch wieder deutlicher machen.  

KI verändert menschliche Gesellschaften

Das zweite Themenfeld ist aber schon dramatisch genug. Sprachliche Kommunikation ist für menschliche Gesellschaften von zentraler Bedeutung. Welche Folgen hat es, wenn nun Maschinen mühelos und eigenständig sinnvolle und situationsangemessene Texte schaffen können?

Was ist authentisch?

Ein erstes Problem ist die Frage der Authentizität. Wenn wir bislang einen längeren Text gelesen haben, konnten wir davon ausgehen, dass sie auf einer menschlichen Autorenschaft beruhten. Das ist nun vorbei. Auch noch so sinnvolle, bedeutende und gedanklich weiterführende Texte können das Ergebnis maschineller Algorithmen sein. Die Maschinen sind extrem leistungsfähig, sie produzieren fast zeitgleich Millionen von Texten zu völlig unterschiedlichen Themen. Die Systeme lernen darüber hinaus schnell dazu, sie werden von Textproduktion zu Textproduktion besser. Kurz: Sie erlangen übermenschliche Fähigkeiten in einem Bereich, der bislang allein den Menschen vorbehalten war. Was macht das mit der Autorenschaft, wird sie entwertet?

Was ist Fake, was sind Facts?

Ein zweites Problem ist eng mit dem ersten verwandt. Wir haben in den letzten Jahren viele Diskussionen um Fake News und Facts. Was ist nun, wenn Maschinen hunderttausende unterschiedlicher aber semantisch konsistenter Texte produzieren können, die eine ganz andere Welt vorgaukeln? Wenn sie zugleich in der Lage sind, Bilder zu manipulieren, die die Behauptungen der Texte scheinbar belegen? Was ist dann noch authentisch, was ist Fake? Es entsteht die Diskussion um Deep Fakes, die so präzise und umfassend sind, dass sie für die Endverbraucher kaum noch entschlüsselt werden können.

Wie sollen wir mit Wissen umgehen?

Ein drittes Problem zeigt sich im Bildungsbereich. Die Allverfügbarkeit von Texten und Wissen wertet den Erwerb von Wissen ab. Warum sollte sich irgendjemand die Mühe machen, jahrelang Bücher zu lesen und das Gelesene zu verarbeiten, wenn es eine Abkürzung in jedem Windows Word Programm gibt, in dem per Befehl die KI die gesuchten Inhalte in individuellen Texten ausgibt? Auch hier kann die KI Übermenschliches. Ein Mensch mag in seinem Leben einige tausend Bücher lesen und gedanklich verarbeiten können, eine KI leistet das einhunderttausendfache in kurzer Zeit und ist zugleich präzise, ohne Gedächtnisschwäche. Wie wird zukünftig der Umgang mit Wissen aussehen, wie wird sich die Bildung in den Schulen verändern?

Dies sind nur einige der zentralen gesellschaftlichen Probleme, die nun zu bearbeiten sind. Wie werden die Gesellschaften darauf reagieren? Wir wissen es noch nicht. Auch in ihren gesellschaftlichen Wirkungen ist die KI ein Mysterium. Die Veränderungen sind riesengroß und werden unsere Kultur herausfordern. Wir werden sehr wichtige, ja existentielle Debatten in der Zukunft zu führen haben, damit aufgeklärte, liberale und demokratische Gesellschaften auch in Zukunft bestehen können.

Zur Leitidee der KI

Zur Leitidee der Künstlichen Intelligenz

Vieles, fast alles, was Menschen heute bewegt, hat mit digitalen Technologien zu tun. Der Umgang mit digitalen Daten prägt unseren Alltag: In Navigationssystemen, im Bestellservice und Online Handel, im Gebrauch des Smartphones, in den sozialen Medien, in der Steuerung vieler Endgeräte. Die digitalen Datenströme durchdringen moderne Gesellschaften. Computerprogramme, die diese riesigen Datenmengen verarbeiten, haben immer umfassendere Fähigkeiten, in spezifischen Aufgaben sind sie ohne Zweifel den Menschen weit überlegen. Leistungsfähige Datenverarbeitung ist aber noch keine Künstliche Intelligenz. Wann aber kann diesen Systemen „künstlicher Intelligenz“ zugesprochen werden?

Was genau meint der Begriff „Künstliche Intelligenz“?

Das Problem: In vielen Diskussionen wird der Begriff als ein assoziatives Schlagwort benutzt, um Verheißungen an die Wand zu malen oder vor der Macht der digitalen Technologien zu warnen. Übertrumpfen Systeme mit künstlicher Intelligenz die Menschen eines Tages? Können wir andererseits als computerähnliche, mit Algorithmen arbeitende Systeme verstanden werden, in eine Reihe mit den Systemen künstlicher Intelligenz, wie etwa der Erfolgsautor Noah Yuval Harari mutmaßt? Laufen wir auf eine so genannte Singularität zu, in der viele vernetzte Computer etwas ganz Neues schaffen, vielleicht eine den Menschen überlegene Intelligenz, wie Ray Kurzweil vermutet?

In diesen Überlegungen ist viel Spekulation. Doch auch ohne diese Überhöhung ist der reale Fortschritt spektakulär: Mit dem Begriff „Künstliche Intelligenz“ ist eine konkrete und faszinierende technologische Entwicklung verbunden, die vor wenigen Jahrzehnten so nicht möglich erschien.

Die Anfänge der Forschung in den 50er Jahren des 20. Jahrhunderts

Woher kommt der Begriff? Welche Leitidee folgen die weltweiten Forschungsprozesse der Künstlichen Intelligenz? Die Anfänge künstlicher Intelligenz auf der Basis von digitalen Technologien liegt nun mittlerweile fast 70 Jahre zurück. Viele Autoren lassen die Erzählung der Geschichte der modernen Erforschung der Künstlichen Intelligenz in der Konferenz in Dartmouth College 1956 in den USA beginnen. In einer denkwürdigen Konferenz mit Pionieren wie John Mc Carthy oder Marvin Minsky wurde die Fragestellung debattiert, wie es gelingen kann, dass Maschinen eigenständig eine Sprache nutzen, dass sie eigenständig Probleme lösen. Kurz: Wie also können Maschinen so gebaut werden, dass sie sich verhalten wie Menschen?

Schon in dieser Ausgangsfrage wird deutlich: Der Maßstab der Künstlichen Intelligenz war von Anfang an „der Mensch“. Aufgrund dieser Leitidee, letztlich der Vergleichbarkeit mit dem menschlichen Gehirn, war auch schon Ende der 50er Jahre von neuronalen Netzen die Rede, die Maschinen digital nachbilden sollten, um ein künstliches Gehirn aufzubauen, ohne dass das damals in irgendeiner Weise realisierbar war.

Der alte Traum von der Schaffung eines künstlichen Menschen

Die moderne Forschung knüpfte mit ihrer Leitidee an einem alten Traum an, der Vorstellung, dass der Mensch in der Lage sei, menschenähnliche Wesen zu schaffen. Dieser Traum kam lange vor der Entwicklung moderner Technologien auf. Es gibt die Sage vom Rabbi Löw aus dem Prag des 16. Jahrhunderts, der ein Wesen, ein Golem aus Lehm geschaffen haben soll. Im 18. Jahrhundert gab es in den Salons der Fürsten viel Aufmerksamkeit für eine scheinbar rein mechanische Figur eines schachspielenden Türken. Es stellte sich doch bald heraus, dass ein kleiner Mensch die Maschine bediente. Zu Beginn des 19. Jahrhunderts schuf Mary Shelley die Geschichte von Frankenstein und seinem Monster, das außer Kontrolle geriet. Im 20. Jahrhundert schließlich bevölkern in der Science-Fiction Literatur vielgestaltige künstliche, von Menschen geschaffenen Wesen wie Cyborgs die Zukunftswelten. Die jeweilige Vorstellung verband sich mit der neuesten Technologie: Im 18. Jahrhundert war es die Mechanik, im 19. Jahrhundert die Chemie, im 20. Jahrhundert die Computertechnologien.

Die Leitfrage der Forschung der Künstlichen Intelligenz war und ist also kulturell tief verankert und steht in einer langen Geschichte. Am Rande sei bemerkt, dass diese Geschichten immer auch eine Auseinandersetzung mit den Grenzen des Menschen, mit der menschliche Hybris waren. Menschen wollten etwas Menschenähnliches schaffen und geraten dabei selbst oft in Gefahr. Auch diese Ambivalenz ist Teil der Diskussionen um die künstliche Intelligenz bis heute.

Versuch einer Definition der künstlichen Intelligenz

Was meint nun der Ausdruck„Künstliche Intelligenz“? Nach Marvin Minsky liegt „Künstliche Intelligenz“ dann vor, wenn Maschinen auf eine Weise handeln, die Intelligenz erforderten, wenn sie von Menschen getan würden. Eine andere Definition lautet: Künstliche Intelligenz haben Maschinen, wenn sie auf eine Weise handeln, bei denen zur Zeit Menschen noch(!) besser sind. Diese Definitionen sind wie viele andere nicht sehr präzise, aber immer ist der Mensch der Maßstab jeder Künstlichen Intelligenz

Ein einfaches Beispiel aus der frühen Forschung: Menschen verfügen ohne Zweifel über eine ausdifferenzierte Sprache. Joseph Weizenbaum hat daher schon in den 60er Jahren ein Computerprogramm geschrieben, Eliza, das auf sprachliche Eingaben mit möglichst sinnvollen Sätzen antwortet. In diese Richtung weist auch ein Test, der auf den Mathematiker Alan Turing zurück geht: Eine Maschine ist dann eine Künstliche Intelligenz, wenn ein Mensch mit ihr über ein Ein- und Ausgabesystem kommuniziert und nicht mehr entscheiden kann, ob sich dahinter eine Maschine befindet oder ein weiterer Mensch.

Unscharf ist die Leitidee vor allem deshalb, weil nicht einfach zu definieren ist, was überhaupt menschliche Intelligenz ausmacht. Künstliche Intelligenz kann also nur als eine Annäherung an einen gewünschten Zustand darstellen. Dabei ist der Mensch nicht einfach besser, die Technik kann in spezifischen Anwendungen aber auch schnell übermenschliche Fähigkeiten erlangen. Schon ein billiger Taschenrechner kann bekanntlich große Zahlen schneller multiplizieren als ein Mensch. Unheimlich wird die Entwicklung dann, wenn die Technik mit übermenschlicher Fähigkeit immer allgemeinere Probleme zu lösen in der Lage ist.

Eine wechselvolle Geschichte

Die Leitidee stand schon am Anfang der KI Forschung. Die dann folgende Geschichte der Entwicklung Künstlicher Intelligenz war nicht geradlinig, sondern verlief sehr wechselvoll. Nach einer Phase der Begeisterung in den 60er Jahren kam die Ernüchterung, weil es mit den damaligen Mitteln noch nicht möglich war, sehr komplexen Computersysteme zu bauen. Erst in den 90er Jahren nahm die Forschung wieder Fahrt auf. In den folgenden Jahren gelang es, digitale Systeme zu programmieren, die sich verhielten wie komplexere neuronale Netze und atemberaubende Ergebnisse erzielen.

Forschungsdisziplinen der Künstlichen Intelligenz

An der Umsetzung der Leitidee „Künstliche Intelligenz“ haben sehr unterschiedliche Forschungsbereiche beigetragen:

In einem ersten Bereich geht es um die Struktur von Wissenssystemen. Hierzu gehört die Weiterentwicklung moderner Logiksysteme wie der Prädikatenlogik. Sie muss im Unterschied zur klassischen Aussagenlogik in der Lage sein, komplex strukturierte Mengen zu bearbeiten. Künstliche Intelligenz soll sich ja in der Welt orientieren. Jedoch besteht die Welt aus vielen, ziemlich komplexen Mengen. Beispiel: Vögel können fliegen. Aber dann sind Pinguine keine Vögel? Es gibt in unseren Wissenssystemen über die Welt viele kategoriale Zweideutigkeiten, die sich nicht leicht auflösen lassen.

In einem zweiten Bereich der Forschung geht es um die Zugänglichkeit großer Wissensbestände. Wer sich in der Welt orientieren will, muss große Datenbanken des Wissens aufbauen und sie kontrolliert und sehr schnell bearbeiten. Doch das bedeutet, dass es wichtig ist, riesige Datenmengen zu beherrschen. Hierzu zählen Großrechner wie Deep Blue von IBM, ein Computer, der berühmt wurde, weil auf ihm Programme liefen, die 1997 erstmals den damaligen Schachweltmeister Kasparov schlugen.

In den meisten Diskussionen der letzten Jahre geht es aber weniger um Wissenssysteme als um Mustererkennungen. Hier hat eine Grundidee, die schon in den 50er Jahren diskutiert wurde, die aber erst in den letzten 3 Jahrzehnten mit verbesserten Computern den Durchbruch geschafft: eine Programmierung, die das Gehirn simuliert, das so genannte neuronales Programmieren. In jedem gewöhnlichen Computerprogramm gibt es Routinen, Algorithmen, Rechenvorschriften die immer wieder verwendet werden, um komplexere Aufgaben zu lösen. Ein einfaches Beispiel: Jede Multiplikation kann man in Additionsroutinen auflösen, man muss sie nur häufig genug wiederholen: 3 mal 3 entspricht 3 plus 3 plus 3. Neuronales Programmieren weicht von dem Prinzip der Aufteilung in einfachere Routinen grundlegend ab. Vorbild der Architektur ist das menschliche Gehirn. Auf der untersten Ebene gibt es nach wie vor digitale Routinen, jedoch simulieren diese Neuronen, die ein Netzwerk bilden und in mehreren Schichten angelegt sind. Die Verbindungen zwischen den Neuronen sind unterschiedlich gewichtet. Eingangssignale stoßen eine Kaskade von Erregungen in dem Netzwerk an. Die Fortpflanzung der Erregungsmuster sind bestimmt durch die Art der Verbindungen in dem Netzwerk. Jedes Muster am Eingang erregt bestimmte Neuronen, die ein bestimmtes Ausgangssignal erzeugen. Wie werden diese komplexen Netzwerke programmiert? Nicht dadurch, dass Programmierer präzise Routinen schreiben, sondern dadurch, dass die neuronalen Netze immer wieder mit Daten gefüttert werden und im kontrollierten Modus das Ergebnis mit dem gewünschten Ergebnis abgeglichen wird. Gibt es eine Abweichung zum gewünschten Ergebnis, werden die Verbindungen zwischen den Neuronen neu gewichtet, bis das Ergebnis stimmt. Diese Art der Programmierung wird auch neuronales Programmieren genannt.

Diese künstlichen neuronalen Strukturen sind extrem erfolgreich in der Mustererkennung. Muster, also regelmäßige Strukturen, spielen in unserem Leben eine große Rolle. Sprache etwa besteht aus wiederkehrenden Mustern. Wörter und Sätze ähneln einander und werden immer wieder variiert. Es gibt aber auch optische Muster wie Gesichter. Es gibt hier bei vielen Variationen immer auch strukturelle Ähnlichkeiten. Komplexe Muster entstehen etwa beim Kaufverhalten vieler Menschen oder beim Verhalten im Straßenverkehr. Diese Muster können Computer, die mit der Technik künstlicher neuronaler Netze ausgestattet sind, extrem gut verarbeiten. Größte Aufmerksamkeit fand das Computersystem AlphaGo, als ein solches System 2016 den weltbesten Go Spieler schlug. Das Go Spiel ist gegenüber dem Schach um ein Vielfaches komplexer. Es gibt nun eine atemberaubende Eigenschaft dieser Computersysteme: Ist ein solches erst einmal programmiert, kann es innerhalb sehr kurzer Zeit andere Maschinen auf den gleichen Leistungsstand bringen! Man kann diese Art der Programmierung also sehr effizient immer weiter verbessern. Hier kann schon die Fantasie entstehen, dass Computer eines Tages Computer Dinge lehren, von denen Menschen nichts mehr wissen.

Ein vierter Bereich der Forschung, der allerdings nur indirekt mit der Künstlichen Intelligenz zu tun hat, ist die Robotik. Sofern man die künstliche Intelligenz im oben genannten Sinne der Menschenähnlichkeit definiert, gehören Maschinen, die wie Menschen sind im Raum bewegen können, die gehen, laufen, springen auch zu Formen künstlicher Intelligenz. Hier ist natürlich auch die Nähe zum alten Traum der Menschheit am größten. Auch hier gibt es atemberaubende Fortschritte.

Schließlich soll ein fünfter Forschungsbereich nur kurz erwähnt werden, es ist die Probabilistik, die Berechnung von Wissen, das wahrscheinlich aber nicht sicher sind. Da das Wissen über die Welt immer unvollständig ist, muss das Wissen durch Wahrscheinlichkeitsschlüsse ergänzt werden. Das Beispiel von gerade: Es ist sehr wahrscheinlich, dass Vögel fliegen können, aber eben nicht sicher. Pinguine sind trotzdem Vögel. Wie aber entwickeln digitale Systeme die Fähigkeit, unter Unsicherheit zu schließen? Hierzu werden Routinen entwickelt, die mit Wahrscheinlichkeiten operieren.

Aktueller Stand: KI Syssteme mit Sprachmodellen: ChatGPT

Der bislang letzte Schritt der Entwicklung war die spektakuläre Veröffentlichung eines neuronalen Netzes im letzten Jahr, das über ein Sprachmodell verfügt und eigenständig Texte verfassen kann: ChatGPT. Tatsächlich ist damit ein Quantensprung gelungen. Vieles von dem, was vor 70 Jahren noch technologische Wunschvorstellung war, ist nun realisierbar.

Zur KI als gesellschaftlicher Herausforderung

Video eines einführenden Vortrags zur Künstlichen Intelligenz

Künstliche Intelligenz – auf dem Weg zu einem neuen Menschen?

Der Umgang mit digitalen Daten ist heute im Alltag nahezu unausweichlich: Wer ein Auto fährt, nutzt ein Navigationssystem. Wer Informationen zu einem beliebigen Thema erhalten möchte, nutzt die Funktionen der stets zugänglichen Suchmaschinen oder „schlägt“ bei Wikipedia „nach“. Telefonate, Fotografien und Filme, schriftliche Notizen: alles geschieht fast ausschließlich mit Hilfe digitaler Technologien. Durch die alltäglichen Aktivitäten entsteht weltweit eine unglaublich große Menge an Daten.

Wer beherrscht die moderne Datenflut?

Wer kann mit dieser schier unübersehbaren Menge von Daten umgehen? Menschen sind dazu nicht mehr in der Lage. Aber es gibt immer bessere Computerprogramme, die so schnell lernen wie neue Datensätze entstehen. Diese Computerprogramme haben hochspezialisierte Fähigkeiten, in denen sie den Menschen weit überlegen sind. Ist all das der Anfang vom Ende des Menschen? Werden künstliche Intelligenzen irgendwann die Herrschaft übernehmen, beherrschen uns dann Algorithmen, ja sind wir Menschen dann nur noch Algorithmen und vielen anderen, wie etwa der Erfolgsautor Noah Yuval Harari mutmaßt? Entsteht ein neues Wesen, eine künstliche Intelligenz, die für den Menschen selbst eine Bedrohung darstellt oder ihn in ganz neue Zeiten führt?

Der alte Traum vom künstlichen Menschen

Der Traum, dass der Mensch in der Lage sei, menschenähnliche Wesen zu schaffen, ist schon alt: Nach einer Sage soll der bekannte Rabbi Löw im 16. Jahrhundert in Prag mit kabbalistischer Kunst einen Golem, ein menschenähnliches Wesen aus Lehm geschaffen haben. Hier wird dem bekannten Gelehrten also eine gottähnliche Fähigkeit zugesprochen. Das Wesen wird, nachdem es seinen Zweck erfüllt hat, wieder zerstört. Im 18. Jahrhundert macht ein Automat, ein schachspielender Türke Furore. Allein aus mechanischen Elementen soll er menschliche Spieler schlagen. Natürlich war dies ein Betrug, ein versteckter Mensch in der Apparatur musste nachhelfen. Anfang des 19. Jahrhunderts hat Mary Shelley die Geschichte von Frankenstein erfunden, hier ging die Schöpfung schon neben alchemistischen Künsten auch mit den damals bekannten Naturwissenschaften vonstatten. Im 20. Jahrhundert schließlich wächst in der Science Fiction Literatur mit zunehmenden technischen Fähigkeiten auch die Zahl der künstlichen, von Menschen geschaffenen Wesen. So bevölkern Menschen-Maschine Mischwesen, die Cyborgs Romane und Filme. In dem Film „2001 Odyssee im Weltraum“ kämpft der Computer HAL gegen die Astronauten eines intergalaktischen Raumschiffes.

Die rasante technologische Entwicklung der letzten Jahrzehnte

Auch wenn man weltanschauliche Erwartungen oder Befürchtungen relativieren muss, so ist dennoch richtig, dass die Entwicklung der Technik in den letzten Jahren große Fortschritte gemacht hat. Maschinen erwerben eine immer komplexere Intelligenz und Roboter gewinnen immer mehr Freiheitsgrade in der Bewegung. Der Rechner Deep Blue von IBM hat 1997 den Weltmeister Kasparov im Schachspiel geschlagen, das Programm  Watson von IBM hat es 2011 geschafft, ein komplexes Wissensspiel, „Jeopardy“ im Fernsehen gegen gut gebildete Menschen zu gewinnen, das Programm AlphaGo von Google hat es 2016 geschafft, den weltbesten Go Spieler zu schlagen.

Allein diese Erfolge sind schon aufsehenerregend. Fundamental neu ist dabei zudem die Technik, die AlphaGo verwendet. Anders als in den vorigen Maschinen wird nun nicht mehr ein Programm Schritt für Schritt vorgedacht und abgearbeitet, sondern die Maschine „programmiert sich selbst“, indem sie mit immer neuen Daten gefüttert wird, die sie analysiert und daraus weitere Schritte abgeleitet werden. Die Technik, die hier verwendet wird, nennt sich „neuronales Programmieren“. Programmeinheiten des Rechners simulieren Neuronen, die zu einem Gitter verbunden werden. Diese Gitter werden über mehrere Ebenen gestapelt, die „Neuronen“ sind miteinander verkoppelt. Ihre Verbindungen zueinander gestalten sie wie biologische Neuronen durch Rückkoppelungsprozesse, Erfolge stärken bestehende Verbindungen, Misserfolge schwächen bestehende Verbindungen oderstärken alternative Wege. Die Technik, die neuronalen Netze zu gestalten nennt sich Deep Learning, der Begriff des „Lernens“ wird hier vom Menschen auf Maschinen übertragen. Das radikal Neue ist nun, das Maschinen mit solchen Netzwerken, die viele Millionen Mal gegen sich selbst Go oder Schach gespielt haben, was in kurzer Zeit möglich ist, eine Kombinationsfähigkeit besitzen, die auch für Programmierer nicht mehr nachvollziehbar ist. Das unterscheidet sie von Maschinen, die wie die klassischen Computer Rechenoperationen Schritt für Schritt nachvollziehbar abarbeiten. So hat AlphaGo in den Partien Züge gewählt, die alle menschlichen Spieler erstaunten und die doch letztlich zum Erfolg führten. Hier wird der Computer zu einer Blackbox, die in gewisser Weise ein eigenes, unvorhergesehenes Verhalten entwickeln kann, ähnlich wie die Geschöpfe aus dem Science Fiction.

Thesen zur Diskussion: Ist ein Künstlicher Mensch, ein transhumanes Wesen zu erwarten?

Was gilt nun: Reden wir von einem alten Traum unserer Kultur, den man getrost illusionär nennen kann oder stehen wir durch die digitalen Technologien vor der Erfüllung dieses Traums? Hier sind fünf Thesen, die auch die Grundlage für eine Debatte um KI am 17. September 2020 in der Kreuzeskirche in Essen gewesen sind.

(Die Thesen des Gesprächspartners Helmut Fink, Akademie für säkularen Humanismus, finden sich hier)

(Vorbemerkung: Die folgenden Thesen beziehen Intelligenz auf „Maschinen“. Entscheidend für intelligente Fähigkeiten sind natürlich eher die Programme und Programmarchitekturen, die auf Maschinen laufen. Beide können nicht aufeinander reduziert werden. Jedoch ist es immer das Aggregat, also eine Maschine, ein Computers, ein Roboters oder ein Netzwerke dieser Einheiten, auf den und die sich die Zuschreibung von Intelligenz bezieht. Der allgemeinste Begriff ist der der Maschine. So ist ja auch von einer Von-Neumann-Maschine die Rede.)

1. These

Menschen werden sich dauerhaft von Maschinen unterscheiden. Das wichtigste Kriterium: Menschen finden sich immer schon vor, sind Teil einer menschlichen Umgebung und entwickeln sich von dort aus. Maschinen werden von Menschen, nicht von Maschinen gemacht. Ihre Entwicklung wird von ebenso von Menschen, nicht von Maschinen geplant. Theologisch lässt sich das deuten als die Unterscheidung des Schöpfungshandelns Gottes und des Gestaltungshandelns des Menschen. So wie die Menschen nicht die Ebene Gottes erreichen können, so Maschinen nicht die Ebene des Menschen.

2. These

Die Intelligenz von Maschinen ist in allen Realisierungen bislang streng begrenzt und auf bestimmte Leistungen fokussiert. In den begrenzten Spezifikationen haben Maschinen leicht übermenschliche Fähigkeiten. Dies gilt schon für einen konventionellen Taschenrechner, der schneller und exakter multiplizieren kann als jeder Mensch. Den Menschen zeichnet dagegen eine generalisierte Intelligenz aus. Er kann rechnen, Fahrrad fahren, jonglieren, malen, musizieren und in vielfältigster Weise kommunizieren. Die Intelligenz ist sowohl kognitiv wie auch emotional, beide Seiten lassen sich nicht trennen. Damit ist die generalisierte Intelligenz eine Eigenschaft des Leibes. Bislang gibt noch nicht einmal in Ansätzen eine Definition für diese allgemeine Intelligenz.

3. These

Entscheidend für ein Verständnis des Menschen ist, dass er nicht in Einzahl existiert. Es kann also nicht ein Mensch mit einer Maschine verglichen werden, da ansonsten entscheidende Eigenschaften des Menschen aus dem Blick gerieten. Menschen leben in Verbundenheit. Kultur und das, was man traditionell den „Geist“ oder die „Vernunft“ nennt, sind Produkte von Kollektiven. Man kann menschliche Verbundenheit als eine nahezu unendliche Überlagerung von kommunikativen Rückkopplungen beschreiben.

4. These

Der Anthropologe Michael Tomasello beschreibt die menschliche Verbundenheit auch als geteilte Intentionalität: Zwei Menschen können sich auf etwas Drittes beziehen und wissen, dass sie sich beide auf etwas Drittes beziehen. Diese Eigenschaft ist schon bei Menschenaffen in ihrem Verhalten nicht zu entdecken. Diese unscheinbare Fähigkeit ist aber die Wiege der menschlichen Kultur. Sie schweißt die Menschen auf der kognitiven Ebene zusammen, etwas, was sich im Tierreich nicht findet. Noch weniger ist es bei Maschinen zu erwarten: Es ist völlig unklar, was eine Maschine leisten muss, so dass man ihr Intentionalität zuschreiben kann.

5. These

Mit der Intentionalität hängen mehrere grundlegende menschliche Vermögen zusammen. Ein Mensch kann einem anderen vertrauen. Das bedeutet aber auch, dass man sich täuschen kann, dass Vertrauen gebrochen werden kann. Kann eine Maschine Vertrauen brechen oder verhält sie sich nicht einfach nur anders als erwartet? Kann eine Maschine ein Versprechen abgeben? Ist das mehr als eine Prognose?

Wie verbesserungsfähig ist der Mensch?

Es ist ein alter Menschheitstraum: Eines Tages mag es gelingen, dass wir Menschen uns Menschen weiter perfektionieren können. Viele Science Fiction sind mit solchen Wesen bevölkert, die körperlich leistungsfähiger sind, die weniger emotional sind und über höhere analytische Fähigkeiten verfügen. (Ob das wirklich Verbesserungen sind, kann man gerne diskutieren). Es ist dabei einerlei, ob diese Fähigkeiten durch genetische Veränderungen entstehen (wie in dem kritischen Film „Gattaca“) oder ob es sich um Mensch-Maschine-Mischwesen handelt (wie im Film „Terminator“). Aber das sind nur neue Formen eines alten Traums. Schon in der Renaissance gibt es die Geschichte von dem Prager Rabbi Löw, der den Golem, ein menschähnliches Wesen, schaffen kann. Nicht zu vergessen natürlich der wohl die berühmteste Kreatur unter allen Schaffensfantasien, jenes Wesen, das in der Erzählung von Mary Shelley der Schweizer Frankenstein konstruiert.

Dieser Traum hat von Beginn an starke Ambivalenzen und geht oft nicht gut aus. Ist es nicht vielmehr ein Albtraum? Die alten Erzählungen gehen oft in diese Richtung. Was ist, wenn wir Menschen unsere Gestaltungsmöglichkeit so stark erweitern können? Was macht das mit uns, mit unserem Menschenbild? Ein amerikanischer Theologe, Philip Hefner, nennt den Menschen einen „created co-creator“. Diese Formulierung ist hilfreich, weil sie die ganze Ambivalenz deutlich macht: Wir sind Geschöpfe, aber solche, die über eine erhebliche Schaffensmacht verfügen. Und diese Schaffensmacht wächst zusehends.

Neue Technologien – künstliche Intelligenz

Wir leben nun in einer Zeit, in der die Forschung in vielen Bereichen rasante Fortschritte macht. Da sind zum einen die neuen Erkenntnisse in der Erforschung der künstlichen Intelligenz. Die Vorstellung eines Supercomputers, den die Erbauer programmieren und ihn so in die Lage versetzen, Ungeahntes zu leisten, gehören der Vergangenheit an. In dieser Linie funktionierte noch Deep Blue, jener Computer von IBM, der den Schachweltmeister Garri Kasparow besiegte. Heute geht es vielmehr um selbstlernende Systeme, die keine klare vorgegebene Hierarchie mehr kennen, die sich adaptiv der wechselnden Umwelt anpassen.  Auf diese Weise ist gelungen, was für einen konventionellen Computer unmöglich schien, nämlich, dass die Maschine auch bei dem noch komplexeren Go Spiel  den weltbesten menschlichen Spieler besiegen (so geschehen im März 2016: AlphaGo besiegte Lee Sedol) Der Unterschied zu Deep Blue ist aber gravierend: Wir wissen nicht mehr so genau, warum die Maschine diesen oder jenen Zug machte, denn die Vorgänge in den selbstlernenden Systemen sind nicht mehr transparent!

Neue Technologien – Gentechnik

Ein anderes Forschungsgebiet, der ähnliche rasante Fortschritte macht, ist die Gentechnik. Seit 2012 ist bekannt, dass man mit einem bestimmten Enzym, Crispr Cas9 genannt sehr zielgenau bestimmte Sequenzen eines Genoms ausschneiden und durch andere ersetzen kann. Damit wird es zum Beispiel möglich, monogenetische Erkrankungen auszuschalten. Doch nicht nur Erkrankungen lassen sich als Anwendungsbereich denken. Warum sollte es nicht möglich sein, bei steigendem Wissen über das menschliche Genom, wünschenswerte Eigenschaften eines Menschen zu verbessern? Sollte es also denkbar sein, dass eines Tages eine künstliche Befruchtung, eine In Vitro Fertilisation vorgenommen werden kann, die das Ziel hat, bestimmte Eigenschaften des so erzeugten Embryos zu verbessern?

Was ist, was werden kann

Noch ist es nicht so weit. Noch sind die Technologien nicht so beherrschbar, dass man sie direkt anwenden könnte. Die Einführung künstlicher Intelligenz in unseren Alltag ist aber nur noch eine Frage der Zeit. Über selbstfahrende Autos wird schon viel diskutiert. Im Übrigen muss die Veränderung des Menschen nicht allein dadurch stattfinden, dass etwa künstliche Mensch-Maschine-Schnittstellen geschaffen werden. Dazu reichen auch die gewöhnlichen Interfaces, zum Beispiel das handelsübliche Smartphone. Das entwickelt sich immer mehr zu einer Kommunikationszentrale des Menschen. Was ist aber, wenn es demnächst nicht nur auf Wunsch reagiert, sondern seinerseits Empfehlungen ausspricht und schon einmal selbsttätig handelt (Kühlschrank füllen, den Weg zum nächsten erwarteten Ziel berechnen, etc).

Es ist offenkundig: Die Zukunft hat hier schon begonnen. Das, was als Erleichterung daher kommt, mag schon bald auch tonangebend sein. Warum widersprechen, wenn die Maschine es besser weiß und wir so schneller zum Ziel kommen?

Zwei Pfade in die Zukunft

Es gibt also, wie die Dinge stehen, zwei Pfade, auf denen wir mit den Technologien stärker verbunden sein werden. Der erste Weg ist der einer durch und durch berechneten Umwelt, die als Verbesserung gegenüber einer wilden und ungezähmten Umwelt erscheint, in der aber die Maschinen und Algorithmen einen zunehmenden Raum einnehmen und immer mehr Einfluss nehmen.  Der zweite Weg ist der der Verbesserung einzelner Individuen durch Gentechnik oder Interfaces. Möglicherweise konvergieren beide Wege auch in Zukunft. Ein Unternehmen in Norddeutschland hat seinen Mitarbeitern auf freiwilliger Basis subkutan einen Chip installieren lassen, so dass lästige Kontrollen (an der Tür, beim Computer) wegfallen. Aber wo endet Bequemlichkeit und wo beginnt die Fremdbestimmung?

Welche Bilder vom Menschen haben wir?

Es ist also hohe Zeit, dass wir darüber nachdenken, wie wir unser Verhältnis zu den Maschinen gestalten wollen. Es gibt viele Pfade und nicht alle sind einfach schlecht. Aber keiner ist auch einfach nur gut. Wir müssen die Ambivalenzen genau prüfen. Dahinter steht die grundlegende Frage: Wie wollen wir leben? Und diese Frage ist mit der noch grundlegenderen verbunden: Wer wollen wir sein? Die Tatsache, dass die Fantasien schon lange vor den Technologien da waren, zeigt, dass es um eine tiefliegende menschliche Sehnsucht geht. Diese Sehnsucht war immer schon auch ein theologisches Thema. Der Mensch greift über sich selbst hinaus. Das ist Teil seiner Würde und Gottebenbildlichkeit und zugleich auch Ausdruck seiner Sünde und Eigenmächtigkeit. In dieser Ambivalenz werden wir unseren Weg suchen müssen. Entscheidend ist wohl, welche Bilder vom gelingenden Menschsein uns leiten. Die Bemerkung am Anfang zeigte schon: In Science Fiction kommt wohl ein bestimmtes Bild vom Menschen zum Zuge, das man mit guten Gründen in Frage stellen kann. Aber welche anderen Bilder haben wir? Hier hat die Theologie eine wichtige Aufgabe. Die biblischen Texte bieten einen großen Fundus. Sie zeigen den Menschen als barmherzigen, als mitleidenden Menschen, als Menschen, der sich verbunden fühlt mit der in umgebenden Natur, die er eben gerade nicht beherrscht. Ein Mensch, der seine fundamentale Begrenztheit vor Gott erfährt. Es ist hohe Zeit, solche Seiten des Menschseins wieder stärker in den Mittelpunkt zu stellen. Sie sind wichtig, wenn es darum geht, die Technologien der Zukunft zu gestalten!

%d Bloggern gefällt das: